甲醇基二元工质热管电池热管理实验研究
摘要:高效的热管理系统是确保动力电池高性能、长寿命和安全的关键。以热管为传热器件,选用纯水比例为5%的水-甲醇二元混合工质作为传热介质,充液率为30%。设计并搭建了实验测试平台,在环境温度20℃,3C放电倍率下,对比分析了无热管理系统、风冷散热和热管
2022-12-26575
汽车软件开发标准,将走向何方?
汽车行业的软件开发标准,最著名的应该是V模型。以V模型为代表的有ASPICE、 ISO 26262 和 ISO/SAE 21434。今天我们主要以ASPICE为基础,探讨V模型在当前汽车软件变革时代的特点。传统的V模型标准在当前这个阶段,有点使不上劲儿。这个要怎么理解呢?首先我们
2022-12-26399
电动汽车动力电池热管理液冷先进控制方法研究
摘 要:动力电池是电动汽车最重要的能源供给装置,热管理系统是提高动力电池性能,确保动力电池安全的重要部件。针对大功率动力电池由散热失效引起安全性能下降的问题,在电动汽车动力电池热效应模型基础上,设计了热管理系统架构和液冷拓扑结构,采用动态规
2022-12-25772
汽车车身结构设计分析浅析
一、车身设计要素1、产品开发○产品开发的市场性要素;○系列化产品发展要素;○生产、工艺继承性要素2、车身外形设计○空气动力学要素;○车身尺寸确定的人体要素;○车身外形设计、内饰造型的美学要素;○外形的结构性和装饰的功能性要素3、车身室内布置设
2022-12-251589
百度Apollo车路协同自动驾驶典型实践场景和技术优势
百度Apollo在全面满足行业已发布标准的基础上,结合已落地项目开展了大量V2X车路协同应用测试和先导应用,以下列举4个大类19个小类的典型协同感知、决策规划和控制应用场景,见表6.3。表 6.3 百度Apollo典型应用场景举例6.2.1 高精地图实时更新实践在百度Apol
2022-12-25938
地图参考位置协议
地图动态层数据的跨图商、跨车企、跨模组无损且安全的流动是地图更新必须考虑的关键要素,为了解决动态高精度地图动态层中由于坐标系不一致导致的坐标偏转、地图版本不一致导致的变更信息不匹配等一系列问题,可以采用地图参考位置协议的方式来解决。所谓地图
2022-12-25251
自动驾驶一体化安全评价实验
为实现对不同自动驾驶解决方案系统的量化分析,本实验基于自动驾驶仿真模拟器Carla二次开发了交通仿真平台,支持模拟使用不同感知与决策控制算法的驾驶行为,并基于不同评价标准,对系统结果进行对比分析。通过对百度实际测试数据与自动驾驶领域公开数据集的
2022-12-25564
自动驾驶 缩略语
3GPP:3rd Generation Partnership Project 第三代合作伙伴计划4G:the 4th generation mobile communication technology 第四代移动通信技术5G:the 5th generation mobile communication technology 第五代移动通信技术AD:Autonomous Driving 自动驾驶ADAS
2022-12-25699
VICAD安全评价模型与仿真验证
为了量化评价VICAD在典型交通场景下对安全的收益,本白皮书在车路协同自动驾驶安全收益模型(Vehicle-Infrastructure Cooperated Autonomous Driving Safety Revenue Model,VICAD-SRM)28的基础上进一步加入复杂的交通场景交互与高保真的传感器数据渲染,建
2022-12-25460
管理扩展自动驾驶ODD,实现无接管连续运行
自动驾驶ODD是指自动驾驶系统设计时确定的适用于其功能运行的外部环境条件。只有当全部条 件都满足时,自动驾驶才能保证正常运行;相反,欠缺任何一个前提条件,自动驾驶系统都有可能出现故障,这时就需要采取紧急停车措施或是驾驶员手动接管。如图3.36所示,
2022-12-25912
L2自动驾驶主流方案及其限制
根据SAE标准定义,L2等级自动驾驶同时提供转向和速度控制,要求驾驶员全时参与驾驶,并能随时介入,紧急情况下在系统要求时须随时接管驾驶。而L2+并不是一个标准自动驾驶等级,是目前行业各个厂家为了强调自身产品在L2级功能基础上 有不同程度的增强,从而采
2022-12-258434
面向L2的车路协同自动驾驶服务
4.2.1 总体技术框架综合以上,VICAD对于L2等级自动驾驶车辆,可主要起到协同感知、辅助定位以及部分协同决策规划的作用。核心目标是通过VICAD,对L2自动驾驶系统进行感知定位增强,为驾驶员提供更多参考决策信息,让人类驾驶员及时得到路端安全提醒,提升驾驶
2022-12-25394
支持自动驾驶的高等级智能道路系统总体设计
5.1.1 智能道路分级标准对道路进行智能化分级的原因有两方面:(1)不同等级智能驾驶汽车需要不同能力等级的道路支撑,以实现规模商业化虽然VICAD已成为我国发展高等级自动驾驶的明确技术路线,但不同等级的自动驾驶车辆要实现 规模商业化发展,对道路的能力
2022-12-25632
高等级智能道路的经济效益、产业价值和社会效益
建设部署高等级智能道路具有显著经济效益、产业价值和社会效益,不仅可以“面向未来”满足车路协同自动驾驶车辆规模商业化落地的发展需求,也可以“兼容当下”降维满足低等级自动驾驶和车联网的发展需求,支撑开展智能交通、智能交管、智能高速、智慧出行服务
2022-12-25975
建设高等级智能道路中国优势
我国车路协同近几年发展迅速,目前总体上已处于全球第一阵营,具有一定的引领优势,中国完全有机会充分发挥自身的体制机制优势、政策优势、技术产业优势,建设和发展高等级智能道路,不仅服务于自动驾驶,还能充分发挥智能道路的全要素高精度感知、车路协同决
2022-12-25223
百度Apollo车路协同自动驾驶进展
标准先行为全面支撑百度Apollo自动驾驶与ACE智能交通实现技术引领和项目落地,百度高度重视并全面 布局车路协同、自动驾驶与智能交通国内外各级标准,涉及V2X通信、汽车、交通、人工智能、数据、地图、信息安全等多个专业领域。目前百度已发布各类标准超过10
2022-12-25518
电磁兼容检测领域设备期间核查指南
前 言本文件是对CNAS-CL01-A008《检测和校准实验室能力认可准则 在电磁兼容检测领域的应用说明》在EMC测试仪器和系统期间核查方面的应用指南及典型案例补充,并不增加其他的要求。本文件为首次制定的第一版文件。电磁兼容检测领域设备期间核查指南适用范围本
2022-12-24735
技术科普丨自动驾驶仿真测试场景库研究(中篇)
自动驾驶仿真测试有三个重要构成,分别是场景库、仿真平台以及评价体系。其中,场景库是仿真平台发展的重要支撑,是评价体系建立的参考基础。关于场景库的学问很多:场景库有哪些数据来源?场景库有哪些格式标准?让我们一起来研究!01、自动驾驶仿真测试场景
2022-12-242016
将“不安全”场景转化为“安全”场景
VICAD除了可以将自动驾驶“未知”场景转化为“已知”场景,还可以综合运用车路协同感知、决策规划和控制等技术,进一步实现将“不安全”场景转化为“安全”场景,提高自动驾驶安全性。如表3.6所示,自动驾驶“不安全”场景主要可以分为三类:1)交互博弈类场
2022-12-24671
让自动驾驶更安全,远高于人类驾驶水平
安全是自动驾驶发展的基础,也是现阶段自动驾驶首先需要重点解决的问题。根据自动驾驶SOTIF理论,如图3.5所示,自动驾驶运行场景总体上可以分为4类,其中区域1为已知安全类场景、区域2为已知不安全场景、区域3为未知不安全场景、区域4为未知安全场景。VICAD对
2022-12-24372