分享好友 资讯首页 频道列表

毫米波雷达在多模态视觉任务上的近期工作及简析

2022-09-28 23:39
三、Segmentation

3.1 多模态融合的map分割

作者的出发点: 在BEV上通过BEVFORMER的方式"无参数化"地完成Lift操作(将图像特征转换到BEV空间),融合雷达点云特征图,用于分割任务,性能超越了之前的分割模型。

  1. 网络结构:

图片


  1. 总结分析:

图片

雷达feature-map构成:0\1的occupy map,nuscenes提供的所有特征(RCS,X,Y,Z,V...)作为输入concate到一起作为输入特征。检测范围是[-100, 100m],网格的大小是200x200。

图片


图片

总结为三点:对于分割任务,输入过多的属性提升不明显(occupy only已经达到53),对multi-path的毫米波雷达点滤除反而导致性能下降(意料之中,因为multi-path的毫米波虽然会导致噪声,但是其扫描到的物体可能正是位于被遮挡的区域),增加sweeps的数量性能也会提升(毕竟点云密度大了)。

四、密集点云生成

4.1 GAN

4.1.1 通过密集点云监督radar生成密集点云

See Through Smoke: Robust Indoor Mapping with Low-cost mmWave Radar (2020, 斯坦福)

图片


4.2 Lidar Supervision

4.2.1 激光雷达点云监督毫米波生成occupy grid map

Radar Occupancy Prediction With Lidar Supervision While Preserving Long-Range Sensing and Penetrating Capabilities作者的出发点: 通过lidar这种数据质量较高的模态,监督毫米波雷达生成质量较高的占据栅格地图,解决在这个过程中的两个问题:一解决occupy网格生成存在于传感器之间的内生性问题:传感器感知距离不一,传感器穿透性不一问题;二解决长距离网格生成问题;生成的occpy grid map可用于下游的路径规划等问题。

  1. 本文一些基本定义:

图片


图片


图片

来源:自动驾驶之心

« 上一页 4/5 下一页 »
评论 0
同类信息