分享好友 资讯首页 频道列表

毫米波雷达在多模态视觉任务上的近期工作及简析

2022-09-28 23:39
为了称呼方便,将生成的occupy grid map中的unit统称为点云,其中,绿色代表模型生成的正确点云,红色代表lidar检测到但是模型没有生成的点云,蓝色代表模型生成但是GT不存在的点云。

  1. 模型架构:使用传统的UNet生成occupy grid map,输入是BEV表示下的Radar的点云,输出为occupy grid。

  2. 模型细节:

图片


图片

如上图所示,由实验得到,通过预处理,模型的FP大大降低;

图片


  1. 总结:

图片


图片

以上是效果图,可以看到,原本的radar输入是非常混乱的,带有非常多的噪声,第二列是训练数据可以看到lidar的点云非常规则能够反映区域内比较完整的几何信息,第三列是输出的结果,通过lidar数据的监督,能够在lidar区域以外,生成噪声较小,能够反映路面分布的点云图。第四列是人工标注的GT,最后生成的result与GT相较radar更为接近。在BEVDepth对网络预测深度监督时,深度本身的模态无关的信息,不加改变地监督深度预测网络是可行的,但是对于radar和lidar两种模态,各自有各自的特性,强制地把一种模态地特征监督另一种模态而不加变化,势必会导致本文中出现的虚警等情况。

来源:自动驾驶之心

« 上一页 5/5 下一页 »
评论 0
同类信息